If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2-175x+40.000
We move all terms to the left:
0-(x^2-175x+40.000)=0
We add all the numbers together, and all the variables
-(x^2-175x+40.000)=0
We get rid of parentheses
-x^2+175x-40.000=0
We add all the numbers together, and all the variables
-1x^2+175x-40=0
a = -1; b = 175; c = -40;
Δ = b2-4ac
Δ = 1752-4·(-1)·(-40)
Δ = 30465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{30465}=\sqrt{9*3385}=\sqrt{9}*\sqrt{3385}=3\sqrt{3385}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(175)-3\sqrt{3385}}{2*-1}=\frac{-175-3\sqrt{3385}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(175)+3\sqrt{3385}}{2*-1}=\frac{-175+3\sqrt{3385}}{-2} $
| (12x+36)/(x+4)=x+3 | | T=-3n+11 | | 12x+27/x+5=x+3 | | 8x+20=9+10x | | 6=3.25+.65a | | 17n+21=6 | | (3x+8)x=210 | | (−14+3i)−(14i)= | | x^2+4x-20=-5x+2 | | 4+2(5)=x | | (2x+5)x=300 | | 2(v-1)-9=-7(-3v+2)-v | | 3.5x-20=2.4x+14 | | 4^2-20x+16=0 | | 90-1.25x=75 | | 7/8m-1/8m=12 | | 226=19x+9 | | 226=19x+4 | | 226=19x+1 | | 5x/13=-16/13 | | 3/5v=-3 | | 2/7w=2 | | 0=2(p+6) | | G(x)=x^2-8 | | 60-p=2(p+6) | | -2(x-5)=-4-2x | | 5x+130=300 | | (4x+3)x=240 | | –3(z–8)=22 | | 5/n=30/450 | | 100-a^2-6a-9=0 | | 1/7(x+6)=5 |